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Abstract-Diffuse radiation from infinite shells with circular-arc cross-sections is analyzed for cases 
involving external source fields of either diffuse or parallel radiation. The governing integral equations 
are derived under conditions corresponding to a modified grey-body analysis, and the inversions given 
in closed form. Specific applications provide local heat transfer corresponding to constant shell 
temperature, local temperature corresponding to constant heat transfer, and predictions of equilibrium 
temperatures when the shell is a thermal shield. Comparisons are made with similar calculations for 

hemispherical shields. 

NOMENCLATURE INTRODUCTION 

B(B), B,(B), rahiation-flux functions (energy 
B,(B), B,(B), per unit time and area) intro- 

duced in equations (1) ; 

ed, flux of diffuse radiation from 
external source ; 

es, flux of parallel radiation from 
external source ; 

dF, --2, incremental shape factor, equa- 
tion (2) ; 

h,(B), H,(B), flux of incident radiation intro- 

&(4> duced in equations (1) ; 

ec9, local heat-transfer function, equa- 
tion (5a); 

K radius of circular cross-section of 
shell ; 

w9, temperature distribution; 
equilibrium temperature; 
function in equation (15). 

Greek symbols 

absorptivity; 
emissivity ; 
angular co-ordinate of point on 
circular arc (see Fig. 1); 
Stefan-Boltzmann constant; 
angle fixing extent of circular arc 
(see Fig. 1). 

INTEREST in radiative cooling of space vehicles, 
solar-energy collectors and thermal-radiation 
shields has brought about a need to increase the 
fund of engineering knowledge through predic- 
tions of the characteristics of basic geometric 
configurations and through application of 
available mathematical techniques to the analysis 
of the fundamental equations. The present paper 
is intended to contribute to this fund. Firstly, a 
simple geometry is studied involving diffuse 
reflection and emission from a heated cylindrical 
shape with circular-arc cross-section that may 
also be receiving radiation from an external 
source. Secondly, the inversion of the governing 
integral equation is presented explicitly in terms 
of a single integration formula. In spite of the 
simplicity in concept and execution, no previous 
developments of this sort appear to have been 
carried out. 

The study of radiative transfer is intimately 
related to the study of integral and integro- 
differential equations. Continuing improvements 
in high-speed computing equipment and ad- 
vances in programming methods have eased 
greatly the logistic demands in the attack on such 
problems. The following analysis is, in fact, an 
outgrowth of a detailed, numerical study of 
thermal radiation near the junctures of heated 
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and interacting surfaces. It became apparent 
during the study that, for a single curved surface 
of circular-arc cross-section, no recourse to 
numerical methods was necessary. The results 
to be given can actually be generalized analy- 
tically even further, to include sections of arcs 
and monochromatic radiation. In order to 
limit the number of parameters, however. 
dependence on wavelength has been suppressed 
and single arcs are considered. 

We confine ourselves to the equilibrium 
radiant interchange of energy between an 
infinitely long shell of circular-arc cross-section 
and an external black-body source field. Ad- 
ditional conditions, such as given temperature or 
heat transfer along the walls of the shell, will 
be introduced later. For example, radiation 
from the convex side can be removed from the 
problem and in this case the radiation along the 
concave portion corresponds to the emission and 
reflection from within a groove on the surface of 
a body. Both emission and reflection will be 
assumed diffuse and the material of the shell 
opaque. A grey-body type of analysis will be 
used, i.e. the coefficients of emission, absorption, 
and reflection are to be independent of tempera- 
ture and frequency except that two extreme 
temperature and frequency ranges with separate 
coefficients will be admitted. In this way we shall 
account for possible differences between the emis- 
sivity or abso~tivity in the relatively low-tem- 
perature regime of the walls and the absorptivity 
of the incident external energy which may come 
from a source of much increased temperature, 
as, for example, in the case of solar radiation. 

The next section derives the governing equa- 
tions and then shows how the basic integral 
equation with known kernel can be inverted. 
The final section applies the theory to four 
problems of practical interest. 

GOVERNING EQUATION AND GENERAL 
SOLUTION 

The energy-flusc balance 
Figure 1 shows a cross-section of the shell with 

angular co-ordinates denoting positions of radii 
drawn through the center of the circular arc. 
With no loss of generality, the co-ordinates of 
points on the shell may be measured from the 
radius that bisects the cross-section, positive 

values denoting a counter-clockwise rotation. 
Let B(@,) be the total radiation flux (energy per 
unit time and area) from the representative 
point P, with angular co-ordinate Or. This flux 
is calculated by summing two effects: the emis- 
sion and the reflection. 

FIG. I. Co-ordinate system. 

Emitted energy flux is given by .~~4(8,) where 
E is grey-body emissivity at the average body 
temperature, u is the Stefan-Boltzman constant 
and T(Q is the local temperature. 

The reflected energy is the difference between 
the incident and absorbed energy at P,. In this 
paper the incident flux at P, is separable into 
two parts : IIf,( flux with a certain low-average 
frequency being emitted and reflected from the 
concave side of the shell ; and flux with a 
different high-average frequency either coming 
from the external source, h&O,), or being reflected 
from inside the shell, HZ(@,). All reflection is 
considered to be diffuse and at the same average 
frequency as the incident radiation. In order to 
admit differences between the absorption of 
incident radiation with widely different spec- 
trums, we introduce two absorption coefficients: 
a1 (which is equal to 6) and a2, associated with the 
average frequency ranges of H, and [hz, Hz], 
respectively. 

The expression for emitted radiant flux is thus 

B(4) = 444) + 4(4) + 44) (la) 

B&Q = ~u~~*(~~) (lb) 

J3#,) = uO@,) f (1 - c)H,(B,) (Ic) 

B&e,) = (1 - 4 M4) -!- f&(4)1. (Id) 
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The flux B&B,) is to be identified with radiation 
from the convex side of the shell. Thus m = 1 if 
the rear side is emitting energy, and m = 0 if the 
contribution of this side is to be excluded. The 
factors (1 - E) and (1 - %) involving the two 
absorptivities are. respectively. the reflectivity 
factors, p and p2. 

The basic governing equations may be derived 
through the conventional use of geometric shape 
factors (see, e.g., Jakob [1], p. 6 et seq.). 

Consider, firstly, the low average-frequency 
distribution H,(8,). If at the point P2 with angular 
co-ordinate 8, an infinitesimal area d& is 
situated, the incident energy per unit time and 
area at P, that comes from dS2 with the same 
average frequency as H,(f?,) is 

where dF,-, is the shape factor of dS, as seen 
from P,. Once this factor is known, an integra- 
tion along the cylinder and over the entire 
arc, from -4 to (CI yields Hr(8,). It is known, 
moreover, that the two-dimensional shape factor. 
applicable to unit length of the cylinder, is 

dF,-2 --- 4 jd(sin q)I (2) 

where, as shown in Fig. 1, p is the angle between 
the normal to the arc at P, and the line PIP2 (see 
Jakob [1], pp. 19-21). For circular arcs 

= (0, - 0,) 
‘I 2- ..- 2 

and as a consequence one gets 

B2(4) = (1 - =a2(4) 

_L (!_- ~ * 
4 

B(e)sin lel - e21 
2 2 - - de,. (4b) 

-4 2 

Equations (4) are the governing integral 
equations. Fredholm equations of the second 
kind with kernel 

sin I4 - 021 --- 
2 ’ 

and their solution yields the combined radiative 
flux in both averaged frequency ranges as a 
function of (II. If both the energy source I&$) 
and the wall temperature distribution T(er) are 
specified, the equations are uncoupled. For such 
cases the radiation fluxes in the two averaged- 
frequency ranges are independent of one another. 
If the temperature along the shell is not given, 
equations (4a) and (4b) are not independent. 
They are coupled by the local heat-transfer 
function Q(er), defined as the difference between 
the emitted and absorbed energy per unit time 
and area. Thus 

Q(e,) = Bo(eI) + Br(e,) + B,(e,) 

- WV - W@r) - lrz(e,) (5a) 

or, alternatively, 

Q(0,) = mEaT* -+ 1 _ E -2 [oT4 - B,] - +B,. 

%b) 

Using equations (l), (3), (4) and (5), one can 
show: 

(m + 1) cuT4 = Q + =;“- ‘) h, ~- 
=2 

By an identical argument one finds for the 

1’ 
additional (high-frequency radiation) flux func- 

“ B,(e,) sin !e,l e2’ de,. 

tions the relation: 

(3a) 
(1 

I y&- 4 ’ * 
(1 ----82+4 _) s 

[(m + 1 

s ’ B,(e,) sin ~f!_~‘?~ de,. 

jel - e,i 
(3b) - IZI 6) CUP - (1 - c)Q] Sill -.T de, 

-- $ J 

’ (64 r 

Equations (1~). (Id) and (3a). (3b) can be 
* B2=(l-a&+!~ 2 - s B sin I!! - e’Zl 

combined to form 2 
de 

a* 
-kh - 

If the energy source and the heat-transfer func- 
tion Q are specified, equations (6a) and (6b) 
form a pair of simultaneous integral equations i- (1 

-- $ - 
-.- 6) - 

4 
1 qe ) 

4 
sin /_4 -- 41 -- 

2 
de,. (4a) 

. ,$ 
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for the temperature distribution. Fortunately, 
however, the solution to (6b) does not depend 
upon the solution to (6a) and, as shown in a 
subsequent section, the complete inversion to 
both equations can be determined. 

External radiation source 
In this report, the incident radiation from the 

external source is considered to enter the open 
face of the arc and to be one of two kinds: 
ed, a known flux of diffuse radiation, or e,s, a 
known flux of parallel rays. The former could be 
formed by emission from a black body opposite 
the opening, representative, for example, of a 
high-temperatured furnace wall. The latter could 
be an idealization of radiation from a distant 
sun. 

The shape factor of equation (2) also applies 
to the diffuse radiation ed, where now the element 
dS, lies along the chord connecting the ends of 
the arc. For a uniform incident field, ed = 
const. == ed,,, 

h,(B,) = e,, cos $ cos “_j . (74 

If, on the other hand, the incident radiation is 
uniform and parallel, h(B,) is the product of e,,, 
and the cosine of the angle between the inner 
normal to the surface at P, and a vector parallel 
to the incident rays. If # is greater than 7712, or 
if the direction of the oncoming radiation is 
sufficiently askew with respect to the radius 
that bisects the arc, regions of shadow are formed 
on the inside. In these regions e, is, of course, 
zero. (Similarly, regions on the outside receive 
radiation if the arc represents a shield.) The 
analysis of examples representing partially 
shadowed arcs falls within the scope of the 
methods of this report but no further attention 
is given them. For the case when $ < ~12 and 
the uniform parallel radiation is directed along 
the plane of symmetry 

4(4) = ese cos 4 

where es0 is a constant. 

(7b) 

Methods of solution 
The previously derived integral equations are 

various forms of the Fredholm integral equation 

At the position B = el, the kernel of equation (8) 
has a discontinuity in slope in common with 
Green’s function for ordinary second-order 
differential equations, and this prompts one to 
seek a possible re-expression in terms of a 
differential equation. Twofold differentiation of 
equation (8) does, in fact, yield an expression 
that combines with equation (8) to form 

d2F d2G / 
dez + y2F z= d82 T p2G. (9) 

A solution of equation (8) must, therefore. 
satisfy equation (9) and, conversely, the general 
solution of the differential equation must con- 
tain the solution of the integral equation. 

The general solution to equation (9) can be 
written 

F(0) = C’, cos yfl + C, sin ye 

where C, and C2 are arbitrary 
I,(e) is the particular integral 
right-hand side of equation (9). 
C, and C,, although arbitrary 
of equation (9), are not so for 

t fi@) (10) 

constants and 
satisfying the 
The constants 
for a solution 
the solution of 

equation (8). They were lost in passing from 
equation (8) to (9) by the double differentiation. 
but they can be determined if F(B), as given by 
equation (lo), is placed into equation (8) and 
the coefficients of like terms are equated. There 
results 

where 

x yf CL* cos y* - p cos ~4 sin y4 
p cos p* cos y* -I- y sin ~19 sin7# 

b 
, Wa) 
, 
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x p sin P$J cos y* - y cos p# sin y# 

y cos p# cos y$ + p sin EL+ sin3 j Wb) 

J 6 
X G(@,) sin yeI de,. 

-* 

Equation (11) is the inversion of equation (8). 
A particularly useful case occurs when 

G(6) = G, cos n6 03) 

and the explicit form of the solution is then 

x ‘I_L cos n# cos j.~# + n sin n# sin & 

( 1 1 p cos y# cos p$ + y sin y# sin &I 
cos ye . 

(14a) 

When n = y = 0, equation (14a) is an indeter- 
minate form. One can show 

F(0) = G, 
I 

1 +$(s2- $2) +p$tan& 
I 

, 

y = PI = 0. (14b) 

Another useful form occurs when y = 0 and 
n = p. In such a case 

F(0) = G&OS P#, y = 0, P = n. 04c) 

For compactness of presentation in the next 
section, we introduce the notation 

zL(Y, $1 = 
~cosnrfrcos~~ +nsinn$sin4qL 
3 cos y* cos 3 # + y sin y$ sin 6 I/ 

05) 

which will be used in applying equation (14) to 
the solution of the radiative heat-transfer 
equations developed previously. 

APPLICATIONS 

The equations on the preceding pages can be 
used to find closed-form solutions to many prob- 
lems of radiative heat balance between various 
forms of energy sources, and infinite shells with 
cross-sections forming one or more circular arcs. 
Four illustrative examples will be given here. 

The first two examples contain solutions of 
problems involving a shell with arbitrary arc 
length and oncoming diffuse radiation, finding: 
firstly, the heat flux when the shell temperature 
is held constant; and, secondly, the temperature 
when the shell heat flux is held constant. The 
second two examples contain solutions of prob- 
lems involving a shell with a semicircular arc 
and oncoming diffuse or parallel radiation, 
eq~librium temperature of the shell being found 
when the heat conduction along it is either 
infinite or zero. Results for a hemisphere held 
to the same conditions are also given for com- 
parative purposes. 

Incident diffuse radiation, constant-iemperature 
shell 

We are concerned here with the determination 
of the emission and heat-transfer distributions 
corresponding to an imposed uniform shell 
temperature together with a uniform black-body 
source distribution specified along the chord 
connecting the arc of the shell. The problem is 
symmetrical in 0 and equations (4) apply where 
T(B,) = const. =c T,, and &(&) is given by 
equation (7a). First casting equation (4b) in 
the form of (8), one finds 

VI = &PI 

G(B) = e,( 1 - u2) cos c cos 5 

P = Q, y = Q 2ja2. 

The solution is given by equation (14) where 

n = 9, G, = e&l - a2} cos 2 

and is 

B&l?) = ede( 1 - CL&,, (9, $1 cos f cos 9 B 

(16) 
which is the flux of radiation reflected from the 
shell at the position 0 in the high average- 
frequency range. 

Next, equation (4a) is cast in the form of (8) so 

W) = Ma, G(B) = d’t;, 

(1 = 4, r=91/<. 
The solution is again given directly by equation 
(14) in which 

n = 0, G,, = EoT;. 
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Thus 

~~~s)=oT:[l-(l--r)Z,~~,i)cos~el 

which is the emergent flux at 19 in the low average- 
frequency range. 

The total heat-transfer distribution follows 
from equation (5b). The result is 

(18a) 

If R is the radius of the circular arc, the inte- 
grated heat transfer per unit length of the 
cylinder is 

R 
s 

’ Q(e) de = 2R caT,4 rn# 
-4 

Wb) 

Equations (16-18) supply the three quantities 
of principal interest, namely, the emission func- 
tion, the local and the integrated heat transfer. 
The number of parameters (E, a,, 4, edo)> 
together with the variation in 8, introduces some 
difficulty in achieving a satisfactory graphical 
presentation of results. The analytic expressions 
involve only combinations of trigonometric 
functions, however, and are quickly adapted to 
specific applications once the geometry and range 
of parameters is fixed. We shall restrict our- 
selves here to an indication of the variation of 
Z,[d(r)/2, $1 = Q(O)/EUT~ (see Fig. 2). This 
function provides at 0 = 0 the local heat transfer 
as a function of E and 4 when no external energy 
is oncoming (edo = 0) and no energy is radiated 
out of the convex side. Under these conditions, 
the heat transfer of the constant-temperature 
shell is a maximum at 0 = 0; from equation 
(18a) the further variation with 0 involves merely 
an additional cosine function as a factor. The 
emission function, B1(0), has its minimum value 
at 0 = 0 and is readily calculated from equation 
(17). 

A non-uniformity in the value of Q(O)/VJT~ 
occurs at E = 0, # = r. This difficulty is not 
unexpected ; it is known, for example, that when 

FIG. 2. Variation of Q(O)/cuTi with E and 4. Both edu and m set equal to zero. 



RADIATIVE HEAT-TRANSFER CALCULATIONS FOR INFINITE 

E = 0, perfect reflectivity exists and a metastable those in the general equation, 
state of radiative energy can exist within a !inds 
chamber. 

When the strength of the external energy 4’) = EaT3 - (* - 'IQ 
source, ea, is zero, equations (17) and (18a) 
yield the contrasting results : 

M0 = 0, Q(0) = 0 when a = 0, # < r, 

B#) = UT:, Q(0) = 0 when a > 0, # = rr. 

For all non-vanishing values of emissivity or 
absorptivity, therefore, the emission within the 
closed region reduces to the emission function 
for black-body radiation UC, as it must under 
conditions of thermodynamic equilibrium. 

The theoretical prediction of the emission 
function is of especial value in the interpretation 
of experimental measurements when the area 
of escape of radiation is small, i.e. when a small 
slit is cut along the element of a right circular 
cylinder whose wall is held at a uniform tem- 
perature. Let # = n - 6 where 26 is the angle 
subtended by the slit at the center of the cylinder. 
If radiation from the external environment can 
be ignored, equation (17) gives the emission from 
within the cavity at the wall temperature T,,. 
For very small 6 this reduces to 

Bl(e) = UT; 1 - 
(1 - +i cos [1/(+/218 
2 d/(e) sin [d(~)‘rr/2] * (19a) I 

Similarly, the integrated heat transfer per unit 
length of cylinder reduces to 

s z-s 
R Q df3 = 2R6aT: we qiE 

1 - -~- cot __ 
-(z-S) 2 2 

(19b) 

Incident d@kse radiation, constant heat transfer 
We are concerned here with the determination 

of the temperature distribution corresponding 
to an imposed uniform heat transfer along a 
circular arc. Let us further consider only the 
case m = 0 for which there is no radiation away 
from the convex side. From equations (6a) and 
(6b), it is apparent that the solution depends 
upon two simultaneous integral equations. 
However, equation (6b) is independent of (6a) 
and, in fact, its solution has already been found 
for incident diffuse radiation and presented in 
equation (16). Substituting equations (16) and 
(7a) into equation (6a) and identifying terms with 
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equation (8), one 

P = a9 y = 0. 

If Q is a constant equal to Q,,, equations (13) 
and (14a-c) can be used to show 

F(e)= epo I + edaa2 (1 - 4 cos W/2) 1 
[ 1 
-- 

1 - a, cos M/2) 

I 
. 

Since 

one finds, after combining terms, 

-T4(e) = Q,, + G Q. 1c, tan g 
[ 

+ f (62 - +2) 
I 1 + edo a2 - (c - a2) (20) 

x -G,2 -j-, 
t 1 

1/az * 2 cos 4 cos fa2 Te. I 1 
It is apparent that, when there is no external 

energy source, i.e. when ea = 0, the function 
EuT4(0) associated with uniform heat transfer 
has its minimum value at the point of symmetry 
0 = 0 and its maximum value at 0 = 9. The 
function wT4(0)/Q,, increases quadratically with 
0 from its low point and achieves the maximum 
value EuT~(O)/Q, + +/8. In Fig. 3 the depen- 
dence of cuT4(0)/Q0 on E and # is indicated. It 
is to be noted that, as in Fig. 2, a non-uniformity 
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<appears at E = 0, 3 = n. For non-vanishing 
vahzes of emission, infm&~ temperature is pre- 
dicted when closure is complete, but the results 
are for the equilibrium case, so an infinite energy 
&mt wonfd also be required in such a case. 

conditions pn = 1 and the total heat transfer 
must be zero, that is 

S21) 
Under this condition, and with the simplification 

T~~~~~~ r~~~~~~~~ ~~~~~~ widh ~~~~~~~ ~0~~~~~~~~~~ 
When the ~ondu6tivity of the shell is ingots, 

its temperature is uniform and the twu equations 
for the high and low average-frequenq, thermaL 
radiation flux, equations (4a) and (4b), can be 
solved ~de~~d~~t~~, jnst as in the %rst example 
considered. In fact, if the oncoming radiation 
is diffuse, the solution in terms of heat transfer 
is given immediately by equation (18s). The 
physical character of the problem has changed 
somewhat, ho-ever. Here the susfaee is assumed 
to be a thin shell, with a semicircular cross- 
section, radiating to a very low temperature 
environment (or back to a black-body sonrce, if 
the incoming radiation is diffuse), and receiving 
energy on the concave side from a somee with a 
relatively high effective temperature. Under such 

caused by setting $s == ~$2~ equation (18b) yields 

X cot I7+(aa)i41 -I- l/a2 
Q=) 

for the ~q~~briurn shell temperature 2%. 
Following exactly the same procedure, but 
a~su~ng parahef oncoming radiation [equation 
(Tb) for AS(@)], one can show 
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It is to be noted that the only difference between 
the equilibrium temperatures for the diffuse and 
parallel radiation is the term within the brackets 
in equation (23). This term is a function only of 
a2, the absorptivity coefficient for the high 
(effective) temperature radiation. It is very 
insensitive to as, however, varying only from 
O-977 to 1 for the range uz = O-l, respectively. 
In the case of infinite conductivity, therefore, the 
shield equilibrium temperature based on equa- 
tions (6) for both parallel and diffuse impinging 
radiation is given, with an error of less than 2.3 
per cent, by equation (22). 

Further approximations in equation (22) 
serve to indicate the range of equilibrium 
temperature. The inequality 

.;5 (cot~+x)-l<~, 05x51 

can be used together with equation (22) re- 
written in the form 

aT4 1 
I=_ _ 

%I 2 “; J 

{cot [VW/41 + d&>-l -. 
x [r+?E)/41 + {cot [572/(E)/41 i- dc>-” 

It follows that 

a2 aT4 
- < -2, < “L _._‘_ 
2~6 - edo - E 2(2 + 7r) 

or, alternatively, 
l/4 l/4 

. 

Figure 4 shows a typical variation of the equili- 
brium temperature with a2 for a fixed E. One can 
show that the result for a hemispherical shell 
with infinite conductivity is 

a,l+E 1 
E ic+a, 2+E’ (24) 

FIG. 4. Equilibrium temperatures on hemispheres and two-dimensional 
cylinders with circular-arc sections having absorptivity coefficient a2 for 

oncoming diffuse radiation; infinite conductivity, c = 0.3. 
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This result is also given in Fig. 4 and shows that 
there is little practical difference in equilibrium 
temperature between the semicircular cylinder 
and the hemisphere, except for high values of aZ. 
This is true for all E. 

Thermal radiation shield with zero conductivity 
In the limiting case of zero conductivity, no 

heat is transferred along the circular arc. 
Hence, the condition for an equilibrium energy 
balance (under the assumptions previously 
mentioned) between a shield and a high tempera- 
ture source is given by equations (6a) and (6b) in 
which nz = 1 and Q = 0. 

Solutions to equation (6b) follow exactly as in 
the previous examples, and equation (6a) 
reduces, for Q = 0. to a form identical to 

equation (8) in which F(e) represents (2 - +T4. 
Solutions for diffuse and parallel impinging 
radiation, therefore, can easily be obtained, and 
when $ = 7712. they take the form 

where 

0 0.2 0.4 O-6 0.6 I.0 

=2 

FIG. 5. Equilibrium temperatures on hemispheres and two-dimerknal 
cylinders with circular-arc sections having absorptivity coefficient a2 for 

oncoming diffuse radiation; zero conductivity, E = 0.3. 
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equilibrium temperature distributions given by 
UT: aZ1+c 1 --- 

-1 
-=cl+a92+C m 
edg 

and 

for the diffuse and parallel radiation cases, 
respectively. 

These results are not similar, as they were in 

2(1 - a2) &(a,, l ) CoS X5 B 
the previous example, for the two types of 

- 
4 - a2 2 (26) oncoming radiation considered. This is illustrated 

for the case E = O-3 in Figs. 5 and 6. When the 
respectively. Similarly, one can show that i conductivity is zero the temperature is no longer 
hemispherical shell having zero conductivity has uniform, but, as illustrated in Fig. 5, it does not 

Z 

I.6 

1.4 

I.2 

IO 

3 

eso 

0.8 

OE 

0:4 

0.2 

FIG. 6. Equilibrium temperatures on hemispheres and two-dimensional 
cylinders with circular-arc sections having absorptivity coefficient a2 

for oncoming parallel radiation; zero conductivity, z = 0.3. 
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vary greatly when the impinging radiation is 
diffuse. Comparing with Fig. 4, one sees that the 
average equilibrium temperature for the diffuse, 
zero-conductivity case is not greatly different 
from the constant equilibrium temperature for 
either the diffuse or parallel, infinite-conductivity 
case. (The results for the hemisphere are the 
same in both cases.) This result is qualitatively 
true for all E > 0.1. 

The temperature distribution caused by 
parallel source radiation for both the cylinder 
and hemisphere is greatly different for the zero- 

and infinite-conductivity cases. Fig. 6 provides a 
measure of the temperature at the edge and at 
the center of cylinders and hemispheres for the 
parallel, zero-conductivity case. The temperature 
at the center is relatively much higher. The 
results for the diffuse radiation source just about 
average the two extremes. Again, these state- 
ments are qualitatively true for all E. 
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R&urn&-Le rayonnement diffus d'enceintesinfinies g section droite circulaire est ltudit dans les cas 
otiles sources de rayonnement diffus ou parallkle sont exthieures. 

Les &quationsint&alessontd&riv8es dans lesconditions d'une analyse modifiee du corps grisetles 
inversions dontrees sous une forme fermee. 

Des applications particulieres dorment : P&change thermique local correspondant a une temperature 
d’enceinte constante, la temperature locale correspondant a un Bchange thermique constant, et les 
previsions des temperatures d’equilibre, quand l’enceinte est un champ thermique. Ces calculs sont 

compares aux calculs analogues effect&s pour des Ccrans hemispheriques. 

Zusammenfassung-Die diffuse Strahlung von unendlich langen, halbkreisfiirmig gebogenen Schalen 
wird analysiert, wobei such aussere Quellen als diffuse oder parallele Strahler berticksichtigt sind. 
Die massgeblichen Integralgleichungen sind fiir einen modifizierten grauen Kiirper abgeleitet und 
ihre Umkehrungen in geschlossener Form angegeben. Spezielle Ableitungen ergeben den Grtlichen 
Warmeiibergang bei konstanter Wandtemperatur, die ortliche Temperatur bei konstantem Warme- 
iibergang und die Gleichgewichtstemperatur, werm die Schale als thermischer Schild betrachtet wird. 

Ahnliche Berechnungen ftir Kugelschalen dienten als Vergleich. 

~OTa411JI-hHa~~I3llPYeTCfI &N$y3HOe M3JIyYeHlle C 6eCKOHeqHbIX 06OnOWK, EIMeIOmEIX 
nonepe~KbIecese~~~~B~~e~yroKpymKocTe~,~n~cnysaesBHyTpeIIK~xnone~~C~0sIfvrK0n 
paCCeJIHHOl?O ~l~~H~~p3B~eHHOrOEl3JIy4eHHR.~hIB~~~HblElCXO~~bI~~HTe~~~JrbH~oypaBH~Hll~ 
AJIfI yCJIOBM8, COOTBeTCTByIOmIIX MO~LK@iI(HpOBaHHOMy COOTHOmeHRIO M3nyYeHHR CepOrO 

Tena, M IIpIlBeAeHbI 06pameHWI B 3aMKHyTOti @OpMe. %CTHbIe IIpMMeHeHIGI ELIOT 

B03MOHEHOCTb OIIpeJIeJIIlTb JIOKaJIbHbIti TenzonepeIioc IIpIi IIOCTOFIHHOti TeMIIepaTypf! 

060~109~11, JIOKaJIbHyIO TeMlIepaTypy, COOTBeTCTByIOIQyIO IIOCTOHHHOMy TeIIJIOIIepeHOCy, 

H IIpe~CKEElTb paBHOBeCHbIe TeMIIepaTypbI AJIFI CJIy%iH, norfia 0AoJIosua npe~cTannneT 
co60# Ten.?oRoti 3IcpaII. llpOBeneHE.1 CpaBHeIIHfI C IIO~O6lIbIMU RWIRCJIeIIHFIMI~ wfl 

nonyc+epnsecKnX nripauon. 


